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Elongated-body theory has been fruitfully applied over twenty years to the 
biofluiddynamic analysis of modes of locomotion of elongated fishes by means of 
body flexure, with special emphasis on the anguilliform mode using undulatory body 
movements, and on the carangiform mode where oscillatory movements of only a 
fish’s posterior end(inc1uding the caudal fin) exhibit phase lag of posterior movements 
behind anterior movements just as in an undulation yet not nearly as much as a 
whole wavelength is apparent a t  any one time. The extension of elongated-body 
theory to analyse the locomotion of elongated fishes with elongated median fins 
(dorsal and/or anal) in modes where the body (together with any caudal fin) remains 
rigid, being propelled forwards by undulations or oscillations of those median fins, 
has long been recognized as desirable but is here presented for the first time. 

In many large groups of fishes, evolutionary adaptation to limited environments 
(such as coral reefs) favoured a development of defensive ‘armour’ a t  the expense of 
speed, to such an extent that bodies became essentially inflexible, with locomotion 
achieved by fin movements alone. In one principal group of such fishes, however (the 
sub-order Balistoidei including the trigger-fishes), a later evolutionary development 
restored a capacity for relatively high-speed movement even though the body 
remained essentially rigid. The balistiform mode of locomotion, with propulsion 
achieved by synchronized movements of the dorsal and anal fins, exists in two 
alternative forms, with either undulatory or oscillatory movements of these median 
fins, that are analogous to the anguilliform and carangiform modes of body flexure, 
respectively. 

Analysis in this paper throws light on the puzzling question of why trigger-fishes 
are able to move so fast notwithstanding the modest extent of their fin movements. 
A form of the large-amplitude elongated-body theory, specially adapted to 
balistiform locomotion, allows a direct comparison of thrust and efficiency for 
different modes of propulsion. The conclusions in brief are that thrust is dominated 
by the mean rate of shedding of backward momentum a t  the posterior end of the 
fish’s propulsive apparatus and that, for movements of median fins attached to a 
deep, essentially rigid body, this momentum is increased (above the momentum 
expected for the same movements of the fins ‘on their own’) by a momentum 
enhancement factor /3 of around 3 or a little more. Yet there is no such enhancement 
of the rate of shedding of ‘ unproductive ’ energy into the wake ; accordingly, overall 
efficiency is improved. Also, especially for the undulatory mode of balistiform 
locomotion, sideforces are minimized so that the fish body avoids sideslip and yaw ; 
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accordingly, the body drag which fin thrust must overcome is reduced by another 
large factor. 

Alongside discussion of the Balistoidei, this paper reviews and analyses balistiform 
locomotion as observed in several other groups, including groups of flexible-bodied 
fishes that regularly use this mode as a low-energy-cost alternative to locomotion by 
means of body flexure. Finally, we similarly analyse gymnotiform locomotion, in 
which the body is again held rigid, being propelled by undulations in just a single 
(ventral) fin, and compare and contrast different interpretations of its advantages. 

1. Introduction 
The twofold challenges of Mathematical Biofluiddynumics as described in a book 

with that title (Lighthill 1975, hereinafter referred to as M B )  are derived from the 
problems of mathematically analysing complicated three-dimensional unsteady 
flows ‘energized by the working of an animal’s motile external or internal surfaces, 
parts of which are highly flexible’ (MB, p. 1)  while recalling that ‘the analyses 
required must be carefully defined and interpreted in a full and intricate biological 
context’ (MB,  p. 2). These problems are well illustrated by the study of fish 
locomotion, set in its biological context in MB, pp. 1 1 4 4  as well as in more recent 
monographs (Blake 1 9 8 3 ~ ;  Webb & Weihs 1983), and shown (MB,  pp. 103-114) as 
demanding from the mathematician a large-amplitude analysis of the three- 
dimensional unsteady fluid motions. 

For the quantitative study of how in a wide range of fish species body undulations 
of large amplitude are used for the efficient execution both offorward swimming and 
of fast starts and turns, there remains in the 1980s (just as there was in the 1970s) 
no realistic option of applying high-Reynolds-number computational fluiddynamics 
to calculate successive flow fields in a three-dimensional fluid region whose shape is 
making large changes with time. Accordingly, the analysis by ‘ large-amplitude 
elongated-body theory’ (MB, pp. 132-137) which can be readily applied in a wide 
range of cases, even though it describes the motions to  only a crude approximation, 
must be our main source of comparative information on when such body undulations 
can achieve good hydromechanical efficiency. t 

The evident need to extend elongated-body theory to modes of swimming in which 
the body remains rigid and propulsion is achieved by undulations propagated along 
a fin alone - or a pair of fins - was noted in a list of problems requiring further study 
(under the heading ( a )  in M B ,  p. 42, which refers back to descriptive material on 
p. 37) but has not hitherto been attempted. Yet there are biologically important 
unsolved questions, set out in detail in 92 below, which call for just this type of 
analysis. 

In  particular, the family Balistidae of rigid-bodied fishes (popularly called trigger- 
fishes) move unexpectedly fast by means of ‘ balistiform ’ propulsion ; that is, 
propulsion by undulations propagated simultaneously along a posterior pair of 
highly flexible dorsal and anal fins. Analysis in this paper is comprehensively applied 
to understanding the effectiveness of balistiform propulsion in this and other families 

t We should however make i t  clear here tha t  we are by no means discounting the possibility that  
in the future an approximate treatment on somewhat different lines might be shown to be even 
more accurate for the description of certain types of fish locomotion, including Cases of balistiform 
swimming . 



Biojluiddynamics of balistiform and gymnotiform locomotion. Part I 185 

of fishes, and is partly extended to ‘gymnotiform’ propulsion (where, as in the 
electric eel Gymnotus, propulsion may occur through undulations propagated along 
a single ventral fin). This analysis is a direct (although, as we shall see, not a 
completely straightforward) extension of the large-amplitude elongated- body theory 
used to study fish locomotion by means of body flexure, of which we now briefly 
recall the fundamental hydromechanical ideas. 

Although this latter theory can be recognized as having developed from ideas of 
long standing used in ‘slender-body theory ’, the alternative designation ‘elongated- 
body theory’ has been preferred in fish biofluiddynamics, partly because of its 
greater intelligibility to biologists, but mainly to highlight the special characteristics 
of a theory requiring careful treatment of the fluid transition between the elongated 
region occupied by the fish’s propulsive surfaces and the posterior vortex wake. 
Elongated-body theory studies the rate of change of fluid momentum within a 
volume Y“ bounded by a control surface which includes a posterior plane n, 
separating the regions of attached vorticity around the body and fins from the region 
of shed vorticity in the wake. For a complete ‘budget ’ of the momentum balance it 
is necessary to take into account momentum transfer by convection across the plane 
17 and also by means of the overall pressure force acting across 17. 

I n  all other respects, the nature of the analysis is similar to that in slender-body 
theory. The fluid momentum per unit length of fish around each cross-section is 
taken to be that which would be found in two-dimensional irrotational flow 
generated by the instantaneous motion of that cross-section resolved a t  right angles 
to the backbone. Because, in addition to the posterior plane 17, the control surface 
bounding the volume V includes two parallel horizontal planes? above and below the 
plane of the fish’s swimming movements (here taken as horizontal), the fluid 
momentum associated with that cross-sectional motion is well-defined. Indeed, when 
the complete cross-section moves as a whole with velocit,y w, that momentum takes 
the classical form mw, where m is the cross-sectional added mass per unit length. 
Furthermore, the area integral of the pressure in the fluid region between the planes 
(a quantity needed, as we have seen, to specify the overall pressure force acting 
across 17) takes the positive value +w2. 

We may pause to compare this elongated-body theory with the types of slender- 
body theory that are much used to describe microorganism locomotion a t  low 
Reynolds numbers, with ‘ stokeslet ’ singularities distributed along the centreline of 
a waving flagellum. Those theories are purely linear and neglect all inertial effects; 
but are subject to complications resulting from the long-range character of the 
stokeslet velocity field, which causes substantial interactions between motions a t  
different cross-sections. By contrast, the elongated-body theory is nonlinear and 
largely dominated by inertial effects (as in the form of the convective transfer of 
momentum across 17) ; but the velocity fields associated with cross-sectional motions 
possess the relatively short-range character associated with dipole far fields, so that 
interactions between motions a t  different cross-sections are greatly reduced. 

It will be evident that, if and when elongated-body theory is to be extended to 
balistiform swimming (for example), the novel analyses required must include 
certain new two-dimensional calculations. First of all, the fluid momentum per unit 
length must be derived for motions of a fish cross-section where the body element is 

t The ‘budget’ of horizontal momentum within ^Y cannot, of course, include any term due to 
the pressure forces acting across these horizontal planes. 
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stationary and only the fins are moving. Secondly, i t  is necessary to calculate the 
area integral of the fluid pressures associated with such motions in order to derive the 
overall pressure force acting across the posterior plane n. 

Out of this pair of new two-dimensional calculations, we are led by the existing 
elongated-body theory to expect the first to make a bigger contribution to thrust 
than the second. Accordingly, special attention has been given in our studies 
(see especially Part 3 of this paper, Lighthill 19906) to calculating the fluid 
momentum associated with the movement of fins attached to a rigid-body cross- 
section. 

The importance of this line of research became still clearer after preliminary 
calculation for a simple model of balistiform swimming, given in $ 4  below, showed 
a large enhancement of fluid momentum. Specifically, the fluid momentum produced 
by movements of dorsal and anal fins attached to a deep rigid-body cross-section was 
found to be from 3 to 4 times greater than the same fin movements would generate 
on their own. 

By contrast, an interesting calculation of the area integral of pressure, given in 
Part 2 of this paper (Lighthill 1 9 9 0 ~ )  for the same model, demonstrated that this 
does still make a positive contribution to thrust (as in the well established elongated- 
body theory), but % contribution which is in no way enhanced relative to that 
generated by the fin movements on their own. Accordingly, it is even less important 
in comparison with the contribution from fluid momentum than in the case when 
cross-sections move as a whole. 

The striking nature of the conclusions regarding enhancement of fluid momentum 
made it important to check whether such enhancement occurs for accurately realistic 
models of balistiform swimming, in which the body cross-section is given the form of 
an ellipse with arbitrary axis ratio (the earlier model represents a limiting case of 
small axis ratio). In Part 3 appropriate conformal mappings are used to carry out this 
calculation, and to extend i t  also to gymnotiform swimming (involving motions of 
just a single fin). In every instance a similarly substantial enhancement of fluid 
momentum is found. 

Nevertheless we suggest that this is just one of two important effects contributing 
to the ‘uncannily ’ high-speed swimming movements observed in trigger-fishes. 
Certainly, the large-amplitude undulations of modest-sized dorsal and anal fins 
carry, as we have seen, enhanced momentum which generates an enhanced 
component of thrust. It is just as important, however, that  the body drag. which the 
fin thrust must overcome, is reduced to the value associated with the uniform rigid 
forward motion of the body through the water; this contrasts with the value much 
greater (by a factor of 3 to 4) that has long been accepted (MB, pp. 114-1 16 ; see also 
Blake 1983a, pp. 98-101) as accompanying body undulations. The thrust 
enhancement and drag reduction are both by a factor of around 3 or a little more and, 
taken together, are sufficient to explain a similar speed enhancement for balistiform 
swimming. 

Our conclusions are important also for gymnotiform swimming, which they 
indicate as conferring substantial advantages through reduction of the energy cost 
of transport. This idea tends to reinforce an earlier suggestion (Blake 19836) that 
evolution of gymnotiform swimming was not primarily related to the special needs 
of electric fishes; a suggestion consistent, indeed, with t,he use of gymnotiform 
swimming by a species, Xenomystis nigri, from a family Notopteridae (the knife- 
fishes) lacking any electrical organs. 

From the general standpoint of theoretical fluid mechanics, the careful formulation 
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in $ 3  of an extension of large-amplitude elongated-body theory to fish propulsion by 
fin undulations is of some conceptual interest ; whereas the detailed calculations of 
fluid momentum in Part .3,  although producing interesting results, involve 
methodologically a straightforward application of conformal-mapping techniques. 
Finally, the calculation of pressure in Part 2 for irrotational flows produced by 
motions of a flexible boundary proves (along with the deduction of its area integral) 
to involve more subtle analysis than might be expected, essentially because in the 
unsteady form of Bernoulli’s equation the a$/at term (time-derivative of the velocity 
potential) is not simple to obtain when the shape of the boundary is itself varying 
with time. 

It is a pleasure to dedicate to  Professor G. K. Batchelor on his 70th birthday a 
paper which in its Part 2 includes material on fluid pressure distributions produced 
by body flexure that bears some relation to his fundamental interests in mechanics 
of fluids as well as to his outstanding text on the subject (Batchelor 1967), while in 
$ 3  below it provides a new application of those ‘slender-body theory’ ideas in which 
he has long taken a profound interest. 

2. Biological background 
Modes of propulsion of aquatic animals are of particular hydromechanical interest 

because about lo9 years of animal evolution in an aqueous environment, by 
preferential retention of specific variations that increase ability to survive and 
produce fertile offspring, have inevitably produced rather refined means of generating 
fast movements a t  low energy cost, which merit study. This is mainly because a t  
every point in the food chain, or network of predator-prey relationships, capability 
of movements that  are fast relative to those of predator or prey, or to the distances 
that must be traversed before prey is found, is one out of the many important factors 
influencing such ability to  survive. 

Some of the other factors, to be sure, may in certain ecological situations be of 
overriding importance, so that evolution proceeds in a direction - for example, 
development of protective armour - that may reduce mobility although net chance 
of survival has improved. Defensive armour has been developed a t  the expense of 
speed within three important orders of fishes. (Tetraodontiformes, Syngnathiformes, 
Zeiformest) where the resulting loss of body flexibility has been such as, in general, 
to preclude propulsion by body undulations. The principal alternative modes of 
propulsion found in such fishes are reviewed by Blake ( 1 9 8 3 ~ )  as well as in Blake 
(1983a, chap. 6). 

Amongst all of these modes of fish propulsion, we discuss here just one, which can 
perhaps be regarded as a further adaptation, in fishes that had lost body flexibility, 
so as to allow them nevertheless to achieve forward motion at low energy cost 
through a combination of good propulsive efficiency with avoidance of drag 
enhancement. This is the balistiform mode of swimming, associated with undulatory 
movements made by both of the median (dorsal and anal) fins. Here it is discussed 
in the first place for rigid-bodied fishes, but afterwards some cases of flexible-bodied 
fishes which are able under a variety of different circumstances to use either 
anguilliform body undulations or balistiform median-fin undulations are described 
and interpreted. The section is concluded by a discussion of the gymnotiform mode 
of swimming, which (this time normally in flexible-bodied fishes) involves 
undulations in just a single median fin. 

t Designated in MB by their older names Plectognathi, Solenichthyes, Zeomorphi. 
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FIQUKE 1 .  Some fish species from the sub-order Balistoidei which use balistiform locomot,ion, either 
in the undulatory mode as with ( a )  Balistes conspicillurn, (6)  Abalistes stellaris, (c) Oxymonacanthus 
Eongirostris and ( d )  Aluterus monoeeros, or in the oscillatory mode as with ( e )  Pseudobalistes fuscus 
and (f) Canthidermis rotundatus. Photographs in figures 1 and 2 are taken from Marshall (1964), 
except for figure 2 (b)  which comes from Marshall (1965). 

The balistiform mode of swimming, as a means of economically achieving more 
rapid locomotion than might seem compatible with a nearly rigid body, is found 
above all in the sub-order Balistoidei of the order Tetraodontiformes; and, 
particularly, in the family Balistidae (trigger-fishes, file-fishes and leather- jackets). 

Figure 1 shows a range of species from the Balistoidei, all of which achieve forward 
locomotion primarily through simultaneous movement of posterior dorsal and anal 
fins. They are divided into two main groups : those in genera like Balistes, Abalistes, 
Monacanthus, Oxymonacanthus, and Aluterus where the undulation passing back- 
wards along both fins has a wavelength considerably less than the lengths of those 
fins ; and those in genera like Pseudobalistes, Odonus, Canthidermis and Xanthichthys 
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where the oscillatory motion of the fins, if it were to be described as an undulation, 
would need to be identified as one that fails to include any entire wavelength. 

Thus, any comparison between the two types of balistiform swimming must be 
rather similar to the comparison between body undulations in the anguilliform and 
carangiform modes (Gray 1968, pp. 19-38; MB, pp. 19-26). The second type may 
indeed be seen as involving not so much a wave as a lateral oscillation of each fin as 
a whole, with a twist a t  each extreme of the oscillation so that the fin’s side-to-side 
movement includes always a backward-facing component. 

For all of the fishes in figure 1 the assumptions of elongated-body theory can 
represent only a crude approximation, but the theory nevertheless gives us some 
useful guidance on the forces exerted by the fin motions. Broadly, it suggests that, 
although the two types of balistiform swimming exert rather similar propulsive 
forces, nevertheless the fully undulatory mode is a more economical way of achieving 
forward movement. Above all, it  keeps to a minimum any fluctuating sideforce 
producing lateral oscillations of the body (oscillations described as ‘recoil ’ in MB, 
p. 87), which is important because it avoids enhancement of the body drag which 
fin thrust has to overcome. 

The theory also indicates that the relatively low ratio of fin depth to body depth 
characteristic of species utilizing the fully undulatory mode of balistiform swimming 
does not necessarily lead to reduced propulsive forces. It suggests, in fact, that the 
force associated with fin movements of a given magnitude is substantially enhanced 
when this ratio is small. 

Among the other two sub-orders of the Tetraodontiformes the truly undulatory 
mode of balistiform swimming is not found, although several species use balistiform 
swimming of the oscillatory type, normally as one of a variety of different available 
methods of locomotion. I n  the sub-order Tetraodontoidei the majority of species are 
somewhat sluggish swimmers; on the other hand, fishes of the genus Tetraodon (see 
figure 2) are able to use oscillation of the dorsal and anal fins for reasonably fast 
forward locomotion. The sub-order Ostraciontoidei, on the other hand, is best known 
for the so-called ostraciiform mode of swimming, involving a simple rotary oscillation 
of the caudal fin about the base of the caudal peduncle, which is not considered to 
be of good hydromechanical efficiency (Blake 1981). 

Within the other two main orders of fishes where development of protective 
armour has reduced body flexibility, it  is above all the Zeiformes (John Dories, boar- 
fishes, etc.) which have adopted the truly undulatory mode of balistiform swimming. 
For example, the boar-fish Cupros aper (figure 2) is typical of fishes in this order in 
its use of undulations propagated along opposed soft dorsal and anal fins to propel 
itself forward. The qualitative conclusions of this paper may be broadly relevant 
to the understanding of balistiform swimming in zeiform fishes ; where, however, an 
unusually low ratio of overall length to body depth makes the use of elongated- body 
theory much less appropriate than in the case of the Balistoidei. 

On the other hand, within the order Syngnathiformes (the tube-mouthed fishes, 
from sea-horses and pipe-fishes to cornet-fishes and trumpet-fishes), it is mainly the 
family Aulostomidae (trumpet-fishes) that  uses the truly undulatory mode of 
balistiform swimming. A fish like Aulostomus chinensis, also shown in figure 2, adopts 
this as its regular mode of swimming, which, however, it can supplement with 
caudal-fin motions when hard pressed. 

Among the flexible-bodied fishes, there are several with long dorsal and anal fins 
which are able to use the truly undulatory mode of balistiform swimming as an 
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FIGURE 2. Some other fish species able to use balistiform locomotion : (a)  Trtraodon, steZlatus, 
(b)  Capros uper, (c) Aulostomus chinensis, ( d )  Conger lubiatus and ( e )  Pseudorhombibs arsius. 

alternative low-cost means of progression when they do not need the higher speeds 
available with anguilliform body undulations. This is particularly characteristic of 
the order Anguilliformest (the eels), as illustrated in figure 2 by the conger-eel Conger 
labiatus. 

The same tendency is characteristic of the Pleuronectiformest (flat-fishes) which, 
i t  must be emphasized, adopt the characteristically anguilliform mode of swimming 
in their very early stages of life, after which a flat-fish turns over onto one side while 
the eye on that side moves round to the other. It retains the anguilliform mode of 
swimming for faster movements and also, as in Anguilliformes, the undulatory mode 
of balistiform swimming for relatively slower movements ; but the motions of body 

t The older names Apodes and Heterosomata were used in MB for the orders Anguilliformes and 
Pleuronectiformes. 
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FIGURE 3. Synchronous side and bottom views of gymnotiform swimming in two gymnotid species : 
( a )  Gymnotus earapo and ( 6 )  Gymnorhamphichythys hypostomus, and in one notopterid species : 
(e)  Xenomystis nigri. 
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and/or fins after it has turned over are, of course, vertical. The median fins in a flat- 
fish are usually referred to as ‘marginal fins’ (see figure 2 for the case of a flounder 
Pseudorhombus arsius) and, in the balistiform mode of swimming, their undulatory 
motions are similar to those observed in Balistoidei except for being turned through 
90”. 

Although the principal analysis in this paper is for balistiform swimming, we 
conclude this section by indicating the biological background to our briefer analysis 
of gymnotiform swimming. This is characteristic of the ‘electric eels’ of the two 
families Gymnotidae and Electrophoridae in the order Cypriniformes. The elect’ric 
eels have flexible bodies and are capable of anguilliform body undulations. For the 
most part, however, they choose to  keep the body rigid and to  propel i t  forward by 
means of undulations propagated along their one and only median fin : the ventral 
fin. Figure 3 gives synchronous side and bottom views of gymnotiform swimming in 
two gymnotid species (Gymnotus carapo and Gymnorhamphichthys hypostomus) : it 
has been argued (Lissmann 1958) that this mode of swimming facilitates effective 
utilization of the fishes’ electrical organs. 

On the other hand, Blake (1983 b )  has drawn attention to the fact that an unrelated 
species of fish without any electric organs (Xenomystis nigri from the family 
Notopteridae in the quite different order Osteoglossiformes) uses a similar type of 
gymnotiform swimming, also shown in figure 3. He uses this observation along with 
othcrs (to the effect that certain mormyroid fishes arc able to use electric organs 
effectively while swimming by means of body motions in the carangiform mode) to  
suggest that other advantages besides those specialized to electric fishes may have 
contributed to the evolution of gymnotiform swimming. Briefly, these include the 
avoidance of fluctuating sideforce and hence of any increase of drag (through body 
oscillations) over its rigid-body value, together with an enhancement of fin t’hrust as 
indicated by calculations in Part 3 (from which a preliminary result had been noted 
already by Blake 1983b). 

3. Extension of elongated-body theory 
In  this section we first recall the results (MB, pp. 132-134) of elongated-body 

theory for fish swimming by body undulations in a horizontal plane where each fish 
cross-section is subjected only to horizontal translation and to rotation about a 
vertical axis. In vector notation, these results derive the horizontal force F with 
which water pressures act on the fish from the following principles: 

(u) the fish acts on the water with an equal and opposite force ( - F + j ;  
( b )  if we consider a region V of the fluid bounded internally by the fish and 

externally by a certain control surface, then the rate of change of horizontal water 
momentum in V can be equated to the sum of the forces acting on it (namely, - F 
plus the sum of the horizontal pressure forces acting across the control surface) minus 
the rate of transport of horizontal momentum out of V across the control surface ; 

( c )  t,he control surface includes two horizontal planes at  equal distance above and 
below the plane of the body’s undulations, and this distance is taken sufficiently large 
so that rate of transport of momentum across the planes (a quantity of second order 
in the disturbances) is negligibly small ; while, because the planes are horizontal, the 
pressure force on each - although it may not be negligibly small (since the pressure 
is of first order in the disturbances) - has zero horizontal component; 

( d )  the control surface includes also a vertical plane 17, attached rigidly to a 
posterior cross-section of the fish (and therefore undergoing the same translations 
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and rotations as that posterior cross-section), so that it remains always perpendicular 
to the backbone ; 

(e) shed vorticity is found entirely behind the posterior plane n; 
( f )  a t  each instant, therefore, the horizontal momentum of the fluid within Y" 

(that is, anterior to IZ) can be related to the irrotational flows generated by the 
motion of body cross-sections ; 

( 9 )  the momentum per unit length of body a t  every cross-section can be 
approximated by the value M that it would take in a two-dimensional flow 
associated with the motion of that cross-section ; 

(which, as explained in ( b )  
above, contributes to the expression for the propulsive force F) can be approximated 
by the value P that i t  would take in a two-dimensional irrotational flow in the plane 
L' associated with the motion of the posterior cross-section. 

To this list of principles underlying the theory, we may add the facts that  (if the 
momentum per unit length of body referred to in ( 9 )  - that is, the horizontal 
momentum M of the fluid between the parallel horizontal planes - is directed 
perpendicular to the backbone, in the plane of the cross-section; (ii) its magnitude 
can be expressed as m w  in terms of the added mass m of the cross-section and its 
velocity component w perpendicular to the backbone; (iii) the magnitude of the 
pressure force Preferred to in (h)  can be calculated as the area integral of the pressure 
in the region between the two parallel planes for the two-dimensional flow produced 
by the cross-section's motion with velocity w, and takes the value imwz. These 
specific facts have relevance only to the case when cross-sections move without 
change of shape; results corresponding to them will need to be derived for the 
extension of elongated-body theory to balistiform motion, which nevertheless will 
continue to be founded on basic principles which are essentially those set out in 
(a)-@) above. 

An important check on the validity of the conclusions derived from these 
principles (a)-(h) - together with the specific results (i)-(iii) for the case when cross- 
sections move without change of shape - was given when it was shown (MB, p. 78) 
that a small-perturbation expansion for the complete three-dimensional problem 
gives the same results. This is an expansion in powers of a parameter E characterizing 
the magnitude of the fluid velocities, relative to the fish's forward speed, generated 
in the plane of a cross-section by the fish's motion through the fluid. I n  cases when 
this parameter is small, an expansion to  second order in e gives the same result for 
the force F as is derived by the principles (a)-(h). At the same time, the soundness 
of the physical arguments embodied in these principles encourages us, particularly 
after such a check in the small-parameter case, to use them also when relatively large 
cross-sectional motions are involved (MB, pp. 105-1 11) .  Similarly, it encourages us 
to apply to the case of balistiform swimming a set of principles which differ from 
those in (a)-(h) above in only one (quite minor) respect. 

This one change is made only to principle ( d ) .  Here, the criteria governing our 
choice for the orientation of the posterior plane 17 no longer constrain it to remain 
perpendicular to the backbone. 

The essential need, in fact, is for this plane I7 to be the plane of the fluid motions 
in the neighbourhood of the posterior cross-section, so that the fluid momentum 
vector M lies in the plane n. An important difference, however, between swimming 
by body undulations and balistiform swimming is that in the latter case the fluid 
momentum vector M is found (see $4)  to be in a direction quite different from the 
direction perpendicular to the backbone specified by (i) above. Now, n m u s t  be taken 

(h)  similarly, the pressure force acting on V across 
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as a vertical plane through this momentum vector M ;  and, accordingly, is directed 
obliquely to the backbone. 

For balistiform swimming, furthermore, the correct posterior location for the 
plane 17 is no longer the tip of the caudal fin, because the caudal fin is held rigid and 
plays no part in the propulsion of the fish. Instead, 17 needs to  be placed at  the 
posterior end of the propulsive apparatus provided by the dorsal and anal fins. 

The reasons for this relocaton are twofold. First, i t  does not interfere with the  
momentum-budget method ( b )  for finding the propulsive force F because the whole 
of this force is exerted within the volume Y anterior to the plane 17; accordingly, i t  
can be related to the rate of change of fluid momentum within Y .  But the location 
proposed for 17 is not only acceptable: it is also essential in order that the shed 
vorticity (see ( e )  above) is found entirely behind 17. 

For balistiform swimming, in which the body and caudal fin remain rigid, the 
mathematical expression of the momentum budget ( b )  takes the form 

1 M d a  = - F+ P- U(IM),=,, 
dt 

where U is the forward velocity of the fish. Here, just as in the elongated-body theory 
for swimming by body undulations, the coordinate a signifies, for a cross-section of 
the fish anterior to the plane 17, its distance along the backbone? from the location 
of 17; that is, from the posterior end of the fish’s propulsive apparatus, taken here as 
a = 0. The position a = L can be taken as the anterior end of the region of undulating 
fin movements, since this is the only region where the momentum M per unit length 
defined by (9) above is non-zero. 

Then the left-hand side of (1) represents the rate of change of the fluid momentum 
in Y (which as just explained takes the value M p e r  unit length of backbone between 
a = 0 and a = L) .  The right-hand side, as in ( b )  above, equates this rate of change to 
the force ( - F )  with which the fish acts on the fluid, plus the pressure force P acting 
across the posterior plane 17, minus the rate of transport of momentum out of V 
across 17; since, from ( c ) ,  there is none across the horizontal plane boundaries. 

Here, the rate of transport of momentum out of Y across 17 takes the form of the 
product UM (the distance forward travelled by 17 in unit time multiplied by the 
momentum per unit distance). Exactly as in the theory for swimming by body 
undulations it is only the translational motion of the plane 17 that produces 
momentum transport across it. I ts  rotational motion about a vertical axis produces 
by contrast no momentum transport (compare MB, p. 109) because the distribution 
of momentum in the plane 17 is an  even function of distance from that vertical axis. 

Analysis of how to calculate the quantities M and P which enter into (1) for the 
propulsive force is given in $4 (see also Parts 2 and 3). It is applied to calculate the 
mean propulsive force over a single cycle of the fin undulations. Just  as for cases of 
body undulations, the expression on the left-hand side of (1) has zero mean since, 
when the tirne-derivative is integrated with respect to time over a cycle, we obtain 
the difference between the values of the cyclically varying quantity 

1: M d a  

Needless to say, the fact that the backbone is here straight makes the definition of a simpler 
than in the theory of swimming by body undulations. 
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at  the beginning and end of the complete cycle - values which are necessarily the 
same. Accordingly, the mean propulsive force is 

P = - U(M),,, + P,  (3) 

where the bars signify means and we shall find that both terms on the right-hand side 
make a positive contribution to the propulsive force. 

This result (3) for the mean propulsive force has its direct analogy for cases of body 
undulations. I n  those cases, however, the form ( 1 )  of the equation specifying the force 
F also gives an important indication of the magnitude of those fluctuating sideforces 
which cause an overall lateral oscillation of the entire fish body (MB, pp. 85-92) ; and 
this in turn produces an augmentation of that  body drag which the propulsive force 
has to overcome. 

By contrast, balistiform swimming involving several wavelengths of fin undulation 
may be expected to produce rather little fluctuating sideforce, particularly since the 
integral (2) whose time-derivative appears in (1) is expected to remain small. 
Essentially, this is because in an integration over several wavelengths the 
contributions from the crests and troughs of the waves can be expected to cancel out. 

This conclusion is important because it suggests why balistiform swimming is able 
to avoid those lateral oscillations which can augment body drag. Indeed, one of the 
two main advantages of this mode of swimming may (as suggested in 0 1 )  be that it 
keeps body drag down to the value associated with rigid forward motion. The other 
main advantage is indicated by calculations of (3) for mean propulsive force given in 
the next section. 

4. A simplified model of balistiform locomotion 
The extension of elongated-body theory given in $ 3  is applied first of all to a 

simplified model of balistiform locomotion. This is a model in which the thickness of 
the fish’s (essentially rigid) body is taken small compared with its depth ; the body, 
in short, is treated simply as a flat plate. Later, however, the theoretical conclusions 
for this simplified model are largely generalized (see $5 and, especially, Part 3) to 
bodies of elliptical cross-section with arbitrary ratios of thickness to depth. 

In  both models - whether with an elliptical or a ‘thin-plate’ body cross-section - 
the median fins (dorsal and anal) are, we emphasize, taken as thin but capable of a 
specific mode of flexure. This reflects the fact that  the skeleton of either fin is 
composed of rays, rather flexibly joined together, and each provided with muscle 
fibres that can cause the ray to make a lateral movement in the approximate form 
of a rotation about its base. 

For a particular cross-section, on the present simplified model, figure 4 illustrates 
a sequence of four phases in the (synchronized) motion of the dorsal and anal fins. 
Here, the symmetrical configurations (a )  and ( c )  represent the two phases when fin 
movements are a t  maximum velocities, so that the associated momentum M p e r  unit 
length is expected to reach its peak. By contrast, in the extreme configurations ( b )  
and ( d ) ,  the fins are instantaneously at rest so that any irrotational motion around 
the cross-section ceases (being dependent only on the instantaneous movement of the 
boundary) and therefore M = 0. 

Our objective in this section, then, is to calculate M in configuration ( a )  and in its 
mirror-image configuration ( c ) ,  configurations representing those twin peaks in the 
magnitude of M during a cycle that appear between the phases ( b )  and (d )  when M 
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FIGURE 4. Successive configurations of a fish cross-section in the simplified model of balistiform 
locomotion : (a) symmetrical configuration with maximum angular velocity o of fin movement ; 
( b )  extreme configuration with fins instantaneously stationary ; (c) mirror-image symmetrical 
configuration with reversed angular velocity (0 ; ( d )  mirror-image extreme configuration with 
stationary fins. 
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FIGURE 5.  (a )  The very precisely two-dimensional problem associated with either Configuration ( a )  
or configuration (c) of figure 4. ( b )  Generalization of the above t o  the case of a flexible flat plate of 
length 22 with velocity f(x) normal t o  itself. 

t t  . r t  

vanishes.? First of all we perform this calculation for a very precisely two- 
dimensional flow associated with configuration (a) .  This represents the seriously 
unrealistic case when the motions of neighbouring cross-sections are all in phase (so 
that each median fin flaps rigidly back and forth like a door about its hinge) ; later, 
we extend it to a truly three-dimensional type of balistiform motion (of undular 
form) passing along each fin, with a phase lag in the motions of posterior sections 
behind those of anterior sections. 

The precisely two-dimensional problem of calculating the momentum M associated 
with either configuration ( a )  or configuration (c) is illustrated in figure 5 (turned 
through 90" in each case because this makes the fluiddynamic problem more 
familiar). Figure 5 also generalizes the problem to one in which the motion of a 
flexible flat plate-Z < x: < Z perpendicular to itself has velocity f(x). The case 
discussed above, with the inflexible body occupying the internal region -s < x < s 
and the fins rotating rigidly with angular velocity w about their bases x = k s, would 
be represented by taking the function f(z) as 

f(x) = 0 (1.1 < a), w( l4 -8)  (8 < 1x1 < 0. (4) 

t Similarly, the c a l d a t i o n s  in Par t  3 for bodies of elliptical cross-section are carried out for 
analogous symmetrical configurations of median fins. 
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Mathematically, the problem reduces to solving the two-dimensional Laplace 
equation for the velocity potential $ outside the plate given that 

(5) 

The required momentum M per unit length is directed along the y-axis, with 
magnitude 

a$/ay = f ( x )  ( - 1  < x: < 1).  

where the order of integration (with respect to y first, and then to x) reflects the 
choice of M as the momentum between two parallel planes 1x1 = X with X large, and 
where the integral on the right-hand side of (6) represents an integral around the 
surface of the plate in the positive (anticlockwise) sense. 

The solution is well known whenf(x) is a simple constant, sayf(x) = 1 (so that the 
entire plate moves with unit velocity). With the expression $1 used to mean the form 
of the potential in this classical case, its value on the surface of the plat,e is given 
as 

(7)  

with the T sign standing for - on the upper surface and + on the lower surface of 
the plate. The integral (6) then gives M as p d 2 ,  the added mass for uniform motion 
of the plate. 

This solution $, forf(z) = 1 has one particular property - the fact that, by ( 5 ) ,  
aq51/ay = 1 on the plate itself - which allows us to calculate the momentum (6) for 
general f (z) .  Evidently, we can rewrite (6) as 

= T (p-x2) f ;  

(8) 

and then use Green's theorem to rewrite it as 

M = P f a , ( a a / w  dx. 

This, by (5) and (7),  gives M as 

(9) 

since in the integral (6) around the plate the change in x is negative on the upper and 
positive on the lower surface. 

The form of (10) already makes clear (for the present simplified model) the main 
conclusion of this paper : that a pair of moving fins, each of depth 1 -s, at.tached to 
a rigid body of depth 2s will generate considerably more momentum than would be 
derived by simply adding up the momentum that the motion of each fin on its own 
would produce. This is because in the integral (10) the size of the factor ( Z - x ) ~ ( l + s ) ~  
on (say) the fin where s < x < 1 is enhanced to take into account the total depth 21 
of the body and fins combined - whereas the corresponding factor for the fin on its 
own would be only (Z-x);(x-s)~. 

More precisely, the form (4) of the function f(x) yields for the momentum (10) the 
expression 

M = 2 p w [ ~ ( l ~ - z ~ ) ~ ( 2 z ~ + s ~ ) - s z ~ c o s - ~  (s/Z)]; (11) 
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FIGURE 6. The momentum enhancement factor /3, as defined in (12), is plotted as a function of 
all for the simplified model shown in figure 5 .  

and figure 6 plots the ratio 

/3 = M/M,, where M ,  = & w ( Z - S ) ~  (12) 

stands for the combined momentum that would be produced by the motion of each 
of the two fins on its own. Here, /3 can be described as a ‘momentum enhancement 
factor ’, which is seen to lie between 3 and 4 for typical values ofs l l  between 0.62 and 
0.78. This represents a very substantial enhancement. 

On the other hand, all of the above calculations apply only in the case of ‘very 
precisely two-dimensional flow ’. Not only is this a seriously unrealistic case as noted 
earlier, but we have found also that it is a case where M is directed laterally (that 
is, along the y-axis) and therefore reverses its direction between configurations ( a )  
and ( c )  - making, accordingly, no contribution to the mean quantity (-uM) which 
appears in the expression (3) for propulsive force. 

In the real three-dimensional balistiform motion, however, the undular character 
of the fin movements implies a phase lag in the motions of posterior sections behind 
those of anterior sections, and this twists the plane of the locally almost two- 
dimensional motion so that the momentum vector M is twisted always towards the 
posterior direction. Such a twist, as we shall see, makes the term (-TEE) contribute 
positively to the propulsive force. 

I n  clarifying these matters, we again focus attention, a t  each fish cross-section, on 
configuration ( a )  - and therefore also, by implication, on its mirror-image 
configuration ( c ) .  Figure 7 illustrates configuration (a )  a t  a certain cross-section, 
alongside the associated configurations at posterior and anterior cross-sections with, 
respectively, phase lag and phase lead in their movements. An identical twist 
towards the posterior direction in the motions of both fins perpendicular to 
themselves is evident from this diagram. 

We denote by K the local twist of each fin, defined (see figure 7 )  as 

K = M / J a .  
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FIGURE 7. (a )  View of fins from posterior end (drawing ‘in elevation’). -, Fin positions at a 
distance a from posterior end, when the fins are in configuration ( a )  (see figure 4). The points A and 
B are a t  a distance x-s from the fin base. ------, Fin positions with phase lead, found at a bigger 
distance a+ 6u from the posterior end. Here the point A‘ is a t  a distance 5 - s  from the fin base. ......, 
Fin positions with phase lag, found a t  a smaller distance a-6a from the posterior end. (6) View of 
fin section AA’ from above (drawing ‘in plan’). Since (as (a )  shows) the point A‘ is displaced by a 
distance ( x - s ) 6 0  from the vertical plane through the backbone, where 60 is the (small) angle 
shown, the angular displacement a of AA’ satisfies the equation tan a = [(z-s) SB]/Sa. The motions 
of AA‘ are lateral with velocity o(z-s) and forward with velocity U. 

Here, with a as the distance of a certain section ahead of the posterior end of the fish’s 
propulsive apparatus and a+& as the same distance for an anterior section, 86’ 
represents the angle between the fin positions at the two sections when projected as 
in figure 7 onto the same plane. (If, for example, the fin’s undular motion took the 
form of a sinusoidal variation of 8 with amplitude 19, and wavelength A,  then the 
value of K would be 

K = 27T8,/h ; (14) 

but the more general definition (13) allows for the possibility of the fin’s motions not 
being precisely sinusoidal.) 
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We consider now, at a point A with coordinates (x, 0) so that its dist,anoe from the 
fin base is (5--s), thc angle a of inclination of t)he fin (see figure 7 )  to the fixed vertical 
plane through the fish’s backbone. Because, at, the section anterior to A by a distance 
Su the fin is turned through an angle SO, i t  follows that the point corresponding to A 
is displaced by a distance ( x - s ) & 8 ;  accordingly, the tangent of tjhe angle of 
inclination a is the ratJio of (x-s)SO to Sa! which by (13) gives 

t a n a  = K ( X - 8 ) .  (15’) 
Clearly? the direction normal (i.e. perpendicular) to the fin at A is itself inclined a t  
the same angle a to the lateral direction (which is the direction normal to the above- 
mentioned vertical plane). Both at A and at the corresponding point B on the other 
fin - with coordinates ( -  x, 0) - the normal instead of being in the lateral direct)ion 
is twisted towards the posterior direction through this same anglc a. 

It follows that in configuration ( a )  the motion of each fin normal t,o itself a t  both 
A and B is directed not laterally but in another direction derived by angular 
displacement towards the posterior direction through an angle a. The magnitude of 
that motion (at A, for example) consists, as figurc 7 shows, of two terms: the 
resultant o(x-s) cosa of the fin’s lateral motion with velocity w ( x - s )  minus the 
resultant 7Jsin a of the fin’s forward motion a t  the swimming velocity 77 of the fish. 
Equation (15) for t a n a  allows us to express the resultant in a form 

W ( X - - S ) C O S a - U K ( X - S S ) O O S a  = (1- v - 1 7 1 ) W ( X - t 3 ) ( : O S C t ,  (16) 

where we have written V = W / K .  

We may recall that  the multiplying factor (1 - V ’ U )  occurs also in classical 
elongated-body t,heory (MB, p. 20) with V as the velocity of propagation of the 
propulsive undular motion along the fish’s body. This is also the interpretation of V 
in (16), becausc? a n  untlular variation in 6’ propagating at speed V in the posterior 
direct,ion (wit>h a decreasing) takes the form 

8 =f(u+ Vt), giving aO/at = V%J/aa or w = VK. ( 1 7 )  

We have found that the motion of each fin normal to itself occurs with velocity (16) 
and is directed not laterally but in another direction turned through an angle a 
towards the posterior direction. We must, now ask what this implies for the 
approximate specification of the local fluid motion by a two-dimensional motion. 

It is evident first of all that, if a were a constant instead of varying along the fin 
s < x < l in accordance with (15), then the local approximately two-dimensional 
motion (produced by the motion of each fin normal to itself) would be not in the 
plane of the cross-section but in a plane derived from it by such a backward twist 
through angle a. This is because the fin movements normal to themselves would be 
in such a plane (while the fish’s essentially rigid body does not, move at all); 
accordingly, t,he consequent fluid motion and its momentum M would be in the same 
plane, and would therefore possess a posterior-pointing component (contributing 
positively, as already noted, t,o the term ( -  UM) in the expression (3) for propulsive 
force). 

Next, if we take into account the actual variation with x in the angle a through 
which the motions are twisted, we must ask in what, plane we can then expect the 
momentum vector M ,  related (as far as possible) to some approximately two- 
dimensional fluid motion in that plane, to lie. We note first that  the motion should 

__ 
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FIQURE 8. The angular displacement a,, calculated as a weighted average (with the velocity (16) 
used as a weighting function) of the angle a defined by (15). The right-hand scale gives a,, in 
degrees, while the left-hand scale gives sina,, (a factor appearing in the principal contribution (21) 
to the propulsive force). 

be as nearly two-dimensional as possible if the plane is defined as one twisted 
backward through an angle a,, representing some sort of average of the angles a 
defined by (15). Furthermore, the momentum vector M should then be approxi- 
mately the momentum per unit length associated with that, two-dimensional 
motion, since fin movements in the region (near the fin base) with a < a,, would push 
the fluid to one side of that  plane while those in the region (near the fin tip) with 
a > a,, would push it to the other side, and with a proper choice of a,, the associated 
componentzs of fluid momenbum normal to  the plane should cancel out .  

Indeed, this argument suggests what type of average should be used in calculating 
a,, ; namely, a weighted average for s < x < 1 with the velocity (16) as the weighting 
function. Figure 8 plots the angle a," so calculated, as a function of the product 
~ ( 1 - s )  of the twist (13) and the depth of a fin. 

Although the three-dimensional effects discussed above suggest an angular 
displacement aav (given by figure 8) for the direction of the momentum M per unit 
length of fish, they do not give rise as regards its magnitude M to any prediction very 
greatly modified from that (given by figure 6) emerging from the two-dimensional 
theory. The one important change is the incorporation of the (1 - V I U )  factor from 

This equation, indeed, implies that, at a point (such as A in figure 7)  with 
coordinates (x,O), the fin's velocity component in the plane of the approximately 
two-dimensional motion can be written as 

(16). 

( 1 - V 1 U )  o( 1x1 - s) cos a,,. (18) 

We illustrate in figure 9 a short length 6a of fish on which the lines at angle a,, to t'he 
backbone show how the actual fin movements are represented as closely as possible 
by movements (18) giving rise to a locally two-dimensional motion. These movements 
represent a reduction by a factor ( 1  - V-lU) cos a,, in the fin velocities (4) assumed 
in the earlier, strictly two-dimensional theory. Accordingly, the momentum per unit, 
length of the fin itself, given by (12) as PM,, is reduced to 

PM,( 1 - V ' U )  cos a,". (19) 



202 J .  Lighthill and R. Blake 

Backbone o = o  

A', I 

Backbone o = o  

4 (1- V-'(i)w(lxl--S)COSa,, 

\ 

\ 
\ 

FIGURE 9. View from above (drawing 'in plan') of the motion of the fin section AA' 
~ , Plane of the associat,ed approximately two-dimensional motion of fluid. 

However, the fin length shown in figure 9 is (6u) sec aav and so the overall momentum 
is pMo( 1 - V-lU) 6a, giving 

M = pMo(l - V I U )  (20) 

as the magnitude of the momentum per unit length of fish. 
In summary, then, the momentum M in configuration ( a )  has magnitude M and 

is directed at  an angle a,, to the lateral direction. As noted earlier, its strictly lateral 
component M cos aav is reversed in the mirror-image configuration (c ) ,  and therefore 
is not expected to contribute to  the mean value TM.  On the other hand, the 
momentum component Msina,, in the posterior direction is unchanged in that 
mirror-image configuration ( c ) ,  in between configurations ( b )  and (d )  when both 
components are zero ; and, for the corresponding component of UM, this represents 
a fluctuation a t  twice the fundamental frequency between UM sin aav and zero, with 
a best estimate of its mean value as +UMsinaav (where (20) gives the approximate 
value of M). The corresponding term ( -uIM) in the propulsive force (3) is, because 
of the minus sign, directed forwards with the same magnitude 

+U/3M0( 1 - V ' U )  sin a,,. (21) 
This term (21) seems to be the leading contributor to propulsive force. It 

corresponds directly to the term umw az/aa in large-ampli tude elongated-body 
theory (MB, equation (5 )  on p. log), with U corresponding to u and sina,, to azlaa; 
but the momentum enhancement factor /3, plotted in figure 6, increases considerably 
the importance of this term (21). 

By contrast, the other term in the propulsive force (3) - namely, the mean of the 
pressure force P acting across the posterior plane - is recognized in large-amplitude 
elongated-body theory as of only minor importance. Furthermore, i t  contributes 
even less in the present theory because it turns out not to be subject to any such 
enhancement. 
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FIGURE 10. Effective absence of enhancement (as s / l  increases) in the pressure force P or in the 
kinetic energy per unit length E .  The graphs, taken from figure 1 of Part  2, show the variation of 
5 = P/Po and of u = E/P, as a function of s/Z for the simplified model illustrated in figure 5 ,  where 
Po = pw2(1-44.  

To make this clear, we note that in Part  2 the magnitude of P is calculated for a 
very precisely two-dimensional motion (with velocities as in (4) above) in the form 

P = cPo, where Po = p ~ ~ ( 1 - s ) ~  (22) 

and the coefficient 5 takes values ranging (see figure 10) from 0.53 to 0.62 instead of 
becoming specially enhanced as s / l  approaches 1. The replacement of w by 
w (  1 - V ' U )  cosa,, in (is) changes (22) into 

P = C( 1 - V-'U)2Uo cos2aav, (23) 

where, just as in classical elongated-body theory, the reduction factor (1 - V ' U )  
appears in a squared form that contributes to the relative insignificance of P. The 
vector pressure force P is directed a t  right angles to  the plane of the motions so that 
its forward component is P cos aav in configurations (a )  and ( c )  - compared with zero 
values in configurations ( b )  and ( d )  - and the best estimate of its mean value is 
$P cos aav, giving 

$c( 1 - V-'U)'P, C O S ~  aa, (24) 

as the contribution of P in (3) to the propulsive force. 

to the leading term (21) as 
We can confirm the unimportance of this contribution (24) by writing out its ratio 

+c( 1 - V-'U)2pw2(1 - s ) ~  C O S ~  aav 
$7/3[+rpw(Z - s ) ~ ]  ( 1  - V-'U) sin aav 

(using (22) and (12) for Po and Ma) and substituting w = VK from (16). Then the ratio 
(25) becomes 

(:;) - (VU-1-1) [ 7 K ( z  - "'1 cos3 a,, ; 
sin aav 
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and, with < between 0.53 and 0.62 and in the region of 3 to 4, the quantity in the 
first bracket is sma,ll; and that in the second is also expected to be small, while the 
product of the remaining factors (see figure 6) is close to 1 or a bit less. 

To sum up, the propulsive force (3) is dominated by the term (21) representing the 
rate of shedding of the backward-pointing component of fluid momentum at the 
posterior end of the fish’s propulsive apparatus. This momentum is enhanced by a 
substantial factor /J which represents the effect of the fin movements being attached 
to a deep, essent,ially rigid, body. 

Finally, the rate of shedding of kinetic energy at, the posterior end of the 
fish’s propulsive apparatus is not so enhanced ; which, of course, has favourable 
implicat,ions for the efficiency of balistiform propulsion. In  Part  2, indeed. for a very 
precisely two-dimensional motion (with velocities as in (4) above), the kinetic energy 
p r  uni t  length is calculated in the form E = aPo, where the coefficient v takes values 
which vary only slightly (see figure lo), from 0.32 to 0.28. It follows that, in the 
approximately two-dimensional motion illustrated in figure 9, with w replaced by 
w(  1 - V I U )  cosa,,, the kinetic energy in a length Su of fish becomcs 
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[a( 1 - V-’U)’P0 cos2 a,,] (Sa) sec a,,. (27 ) 

Accordingly, the rate a t  which fin movements generate ‘unproductive ’ energy which 
is shed in the vortex wake is 

(28 )  

in configurations (a) and (c) ;  or (see (21) above) half as much on a time-averaged 
besis. 

When we compare this rate of generation of ‘unproductive’ energy with the rate 
of generation of ‘useful’ work by only the main term (21) in the propulsive force, we 
obtain once more a ratio as in ( 2 5 ) ,  but with 6 replaced by the somewhat smaller 
coefficient a and (in partial compensation for this reduction) cos3 a,, replaced by 
cosa,,. The resulting ratio is again small (a bit smaller than before) and for two 
main reasons : 

(i) as in classical elongated-body theory, the factor (1 - V ’ U )  appears to the first 
power in the rate of generation of useful work but squared in the rate of generation 
of unproductive energy ; while 

(ii) the ratio is still further reduced by the presence in the denominator of the 
momentum enhancement factor /3, 
That factor represents additionally, then, an enhancement of propulsive efficiency. 

Ua( 1 - V-’U)2Po cos a,, 

5. Generalizations and conclusions 
Analysis of balistiform swimming in $4 by means of a simplified model led to some 

clear conclusions: that  propulsive force is dominated by the rate of shedding of 
backward momentum, and that a substantial momentum enhancement factor p both 
magnifies this force and improves propulsive efficiency. We must now ask whether 
the model’s principal geometrical simplification (characterization of the lateral 
thickness of the body as negligibly small) may have exaggerated the momentum 
enhancement effect. 

The answer to this question is obtained in Part  3, $3,  where fish bodies with 
realistically elliptical cross-sections of axis ratio t / s  (ratio of the body thickness 2t to 
the body depth 2s) are analysed and the corresponding momentum enhancement 
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factor p derived as a function of t / s  and of the solidity ratio s / l  (ratio of the body 
depth 2s to the total cross-sectional depth 21 including fins as well as body). Part 3 
illustrates the sectional geometry at the top of its figure 6 and sets out the results in 
its figures 7 and 8. We see from figure 7 of Part 3 that  calculations for the simplified 
model (with t / s  essentially zero) do exaggerate the momentum enhancement effect 
but only to a modest extent. Figure 8 of Part 3 shows indeed that, as t / s  increases 
from 0 to as high a value as 1 (case of a circular body cross-section), the momentum 
enhancement factor drops from 2.9 to 2.6 when s/b = 0.6, from 3.4 to 2.8 when 
s / l  = 0.7 and from 4.2 to 3.0 when s / l  = 0.8. We recall that  balistiform locomotion is 
exhibited mainly in fishes with values of t / s  somewhat intermediate? between 0 and 
1. The above calculations caused us to comment in $1 above that momentum 
enhancement for balistiform locomotion is by a factor of 'around 3 or a little more'. 

The propulsive force in balistiform swimming should be dominated, then, by the 
momentum-shedding term 

$UpM,( 1 - V I U )  sin a,, (29) 

(see (21)) with the above revised values of p. We have not considered i t  worthwhile 
to try to recalculate the additional term P which, from being insubstantial in 
classical elongated-body theory, is made negligible ($4) as a result of momentum 
enhancement. 

We emphasize that our conclusions apply equally to both of the two main modes 
of balistiform locomotion, designated in figure 1 a8 the undulatory and oscillatory 
modes. The force depends on the value of (29) at. the posterior section a = 0 of the 
fish's propulsive apparatus ; and this value is well defined in terms of w ,  t8he angular 
velocity of fin-ray movement and K ,  the twist (13) of each fin, as that section passes 
through the symmetrical configuration (a).  For a truly undulatory motion, the ratio 
P = W / K  can be interpreted (see (17)) as the propagation.speed of the wave; but, the 
ratio remains well-defined also in the oscillatory mode, where its interpretation is 
really only as a sort of 'equivalent wavc speed'. (A similar distinction exists for 
modes of locomotion by body flexure (MB, p. 20), where a certain quantity I/ 
represents a true wave speed in the anguilliform mode but only an equivalent wave 
speed in the carangiform mode.) 

Momentum enhancement is present, then, to much the same extent for both modes 
of balistiform locomotion ; and we are forced to ask, therefore, what advantages, if 
any, may have accompanied the evolution of those more complicated neuromuscular 
control mechanisms that are required for the undulatory mode. The main benefit, 
already noted towards the end of $1 and a t  the end of $3, stems from the virtual 
elimination of fluctuating sideforces ~ allowing the essentially rigid body to move 
forward without those oscillating motions of sideslip or yaw which are known (Blake 
1983a, pp. 98-101) to increase body drag by a factor of 3 to 4. Provisionally, then, 
we may expect the above-noted enhancement of thrust by a factor of about 3 or a 
bit more to coexist with reduction in body drag by a comparable factor, which, with 
body drag proportional to V ,  might enhance the swimming velocity U by (again) a 
similar factor. 

Here we should pause and consider whether any other serious inaccuracies in our 

t At  the same time, because the plane in which the fluid motions are most closely two- 
dimensional is inclined (see figure 9) at an angle a,," to  the fish cross-section, the effective value of 
t / s  for the body's elliptical section by such a plane is increased by a factor seca,, and i t  is for t h i s  
increased value o f ' t / s  that  the appropriate value of p needs to  be read off from the curves in Part  
3. 
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model (besides the geometrical one which has been comprehensively addressed in 
Part 3) may limit the value of the above conclusions. In this context their most 
obvious source of inaccuracy lies in the approach to determining M through its 
calculation for a locally two-dimensional flow that approximates as well as possible 
the real three-dimensional flow.? It is in the undulatory case, particularly if the 
wavelength A of undulations is not very large, that the approximate representation 
of solut.ions of the three-dimensional Laplace equation by solutions of the two- 
dimensional equat.ion 

(30) 
may involve substantial errors. These indeed are cases where a different two- 
di mensional equation 

(31) 

a2$/ax2 + a 2 $ / ~ 9 2  = o 

S2$/dx2 + a2$/2y2 - k2$ = 0 (where k = 21t/A) 

might be thought to reprcscnt the three-dimensional Laplace equation more 
accurately. 

Although we have not. embarked on any calculations using (31), preferring at 
present to estimate momentum enhancement by a direct comparison of the results 
of applying elongated-body theory to different cases, we can see from a knowledge 
of t.he fundamental solution K,(kr) of (31) in Bessel-function form (where (x2+g2)!  = 
r )  how that cquat.ion’s use inight affect the calculation of momentum. Basically, this 
solution behaves like the corresponding solution of (30) at short range but, falls off far 
more rapidly when kr is hrge. Accordingly, the momentum produced by given fin 
movements will be spread over a gradually reduced area as k increases. Momentum 
enhancement, in short, may be expected to be reduced as the wavelength of an 
undulatory motion is itself reduced. This consideration, particularly in relation to 
studies of t.he evolution of t,hc undulatory form of balist.iform locomotion, may 
impose a countervailing disadvantage on any further reductions in wavelength after 
the initial advantage of drag 1imit.at.ion through reductions in body oscillations has 
been rwpcd . $ 

We should not leave the subject, of balistiform locomotion without referring to its 
use by cert.ain groups of flcxiblc-bodied fishcs as an alkrnative low-cost means of 
progwssion when t.hcF do not netd t.he higher specds available with anguilliform 
body undulations. The thin bodies of the flat-fishes (Heterosomat.a) make the model 
of $4 rather accturat~ (even t.hough tho whole geomet.ry is t.urned t.hrough goo), and 
the conclusions in t.hat sect.ion rtyprding efficiency contirm the low energy cost of 
propulsion of such fishes by simple undulations of the marginal fins. Analogous 
advantages a.rc rcy)cd by many ccls (Apodes) which arc’ ablc to hold their body I 

st.raight whilc wuvct motions pass dong their median fins cither in t.hc posterior or 
(for hac*kward mot.ion) in the antcrior dircwtion ; although in their case. of course. t.hc 
model of’ Part 3 is appropriate w i t h  t / s  around 1. 

b’iiially. H‘C t.ouc:h hricfly on t.hc biofluidtlynamios of gymnotiform 1ocomot.ion in 
tishes possessing a long vent.ral fin but no  corresponding dorsal fin : t.hat is, a mode 
of locomotion i n  ivhivh thc fish’s I)ocly is hvld rigid and undulations pass along t.hc 

t Hy coiitriist. the neplcwt o f  aiiy vorticity shed a t  fin t i p  is liktsly t o  rivliicc. only  slightly thr  
iic.ciirtic.y of the  ii.rot;itioiiul-flo~ c.tilc.iilation ofM for an unstratly fluid motion like this. where t h e  
riitlier stiitiII anililitritle ot’oscilltiticm of t ins r d i i t i w  t o  the  water limits greatly the  displawment of 
any s h t ~ c l  vorticity. 

$ A s  l’iirt I got’s t o  Iwrss ive i i t l ( l  this  footiiote wntirniiiig thiit c d w l a t i o n s  l~ised on ecluation 
(31 ). \vbic.h h a w  t i o w  Iwen niiitlt.. (lo inclt*c4 tlrnionstrate swh a . ( , o i i i ~ t t . r ~ i i i l i n ~  disiitlwnttige .. 
T h r w  c.iilcwliitions tincl th(*ir liiologiwl inildic.atioiis arv t o  lw set out  i i i  I’art 4 of thf- prwwit sc*ric*s 
( I,igh t hill I !)!Hk). 
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ventral fin in the postcrior direction. Our analysis follows the 8ame form as in $4, 
with the omission of any dorsal-fin effects; but, needless to say, a new determination 
of the momentum enhancerncnt factor is needed. 

Part 3 gives this in its $2 for fish bodies with elliptical cross-sections of axis ratio 
t / s ,  and obtains the momentum enhancement factor /3 as a function of t / s  and of €he 
solidity ratio 2s/(Z+s), where the latter is now the ratio of the body depth 2s to  a 
t,otal cross-sectional depth Z+s including the depth I-s of just a single fin. Part 3 
illustrates the sectional geometry in its figure 2 and sets out the results in its figures 
4 and 5 .  The momentum enhancement is factor is here defined as 

p = M / M 1 ,  where M I  = Q n p ~ ( Z - s ) ~  (32) 

is the momenturn that would be associated with the motion of just  the single fin on 
its own (thus, comparison with (12) gives MI = $%?,,). The value of p for typical 
solidity ratios around 0.7 is in the region of 2.4, representing a considerable 
momentum enhancement but not quite so much as in the balistiform mode. The 
estimate (21) of propulsive force in the balistiform mode has to  be replaced by 

iUpM,(  1 - V l U )  sin a,, (33) 

in the gymnotiform mode. 
Very much as before, we see the advantages of gymnotiform locomotion as residing 

partly in an enhancement of thrust (without a corresponding enhancement of 
‘unproductive’ energy generation) and partly in a reduction of drag, the latter 
reduction being evident once again from the argument given a t  the end of $3. These 
are substantial advantages, leading to a reduced energy cost of transport, and are 
available, of course, whether or not a fish possesses electric organs whose use may be 
facilitated in a mode of locomotion with the body held rigid. 
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